

VINEETA GARG 1

DATA TYPES AND OPERATORS
.

DATA TYPES

Data type states the way the values of that type are stored, the operations that can be done

on that type, and the range for that type.

❑ Variables are used to store values of different types like character, integer and

numbers with decimals etc. (variable definition)

❑ Different kinds of data require different amount of memory for storage.

❑ These different types of data can be manipulated through specific data types.

DIFFERENT TYPES OF DATA TYPES

There are four different types of data types:

❑ NUMERIC

• They are used to store only integer values.

• They can be byte(1 byte),short(2 bytes), int(4 bytes) and long(8 bytes)

• For eg. byte roll;

 int marks;

❑ FLOATING

• They are used to store numbers having decimal points

• They can be float(single precision: 4 bytes), double(double precision: 8 bytes)

• For eg. float percentage;

 double discount;

❑ CHARACTER

• They are used to store characters. Any symbol present on the keyboard is

treated as character.

• We use char data type to store single value(enclosed in ‘ ‘) and string data type

to store group of characters (enclosed in “ “)

• For eg. char grade=‘A’;

 String name=“ Akshay”;

VINEETA GARG 2

❑ BOOLEAN

• They hold values either true or false

• They are 1 bit in size

• For eg. boolean b1=true;

 boolean b2=false;

VARIABLE NAMING CONVENTIONS

❑ Variable names are case sensitive. For eg. num and NUM are treated as two

different variable names.

❑ Keywords or words, which have special meaning in java, should not be used as the

variable names. For eg. class, main, public etc.

❑ Variable names should be short and meaningful.

❑ All variable names must begin with a letter, an underscore(_) or a dollar sign($).

❑ After the first initial letter, variable names may contain letters and digits (0 to 9)

and (_,$), but no spaces or special characters are allowed.

Examples of valid variable names: sum, marks1, first_name, $money

Examples of invalid variables names: marks%, 12grade, class, last-

name

CONVERSION METHODS

1. CONVERTING STRING TO NUMBER:

 We always get string value from text field. We can use parse method to

 convert it back to number.

2. CONVERTING NUMBER TO STRING:

 a. valueOf() method

 b. toString() method

VINEETA GARG 3

 c. concatenation operator

OPERATORS

Operators are symbols that manipulate, combine or compare variables.

• Arithmetic

o Unary – They require a single operand to perform an operation. They
can precede or follow their operands. For eg. unary +, unary -,
increment/decrement operator.

OPERATOR DESCRIPTION EXAMPLE

UNARY - To make the value of the
number negative

-5

UNARY + To make the value of the
number positive

+5

INCREMENT
++

To increment the value
by 1

Num++ or

++Num

DECREMENT

--

To decrement the value
by 1

Num—or

--Num

o Binary – They require two operands to perform an operation. For eg. +,
-, *, /, % .

OPERATOR DESCRIPTION EXAMPLE

+ Add two operands 10+5=15

- Subtracts two operands 10-5=5

* Multiplies two operands 10*5=50

/ Divides two operands and gives
quotient

10/5=2

10/3.0 = 3.3

10.0/3=3.3

VINEETA GARG 4

10/3=3

% Divides two operands and gives
remainder

10%5=0

• Relational/Comparison Operator: These operators describe the
relationship between two operands. For eg. <,>,<=,>=,==,!=

OPERATOR DESCRIPTION EXAMPLES

< Checks if the value of left
operand is less than the
value of right operand, if yes
then condition becomes
true.

10<15, true

10>15, false

‘rain’<’sun’

true

> Checks if the value of left
operand is greater than the
value of right operand, if yes
then condition becomes
true.

15>10, true

15<10, false

‘rain’>’sun’

false

<= Checks if the value of left
operand is less than or equal
to the value of right
operand, if yes then
condition becomes true.

15<=15, true

13<=15, true

16<=15, false

‘rain’<=’sun’

true

>= Checks if the value of left
operand is greater than or
equal to the value of right
operand, if yes then
condition becomes true.

15>=15, true

16>=15, true

14>=15, false

‘rain’>=’sun’

false

= = Checks if the value of left
operand is equal to the value
of right operand, if yes then
condition becomes true.

15= = 15,
true

16 = = 15,
false

‘rain’==’sun’

false

<> Checks if the value of left
operand is not equal to the
value of right operand, if yes
then condition becomes
true.

15 <> 15,
false

14 <>15, true

‘rain’<>’sun’

true

• Assignment Operator: Following assignment operators are supported by
Python:

OPERATOR DESCRIPTION EXAMPLE

VINEETA GARG 5

= Assigns values from right side
operands to left side operand

A = 10

+= Adds right operand to the left
operand and assign the result to
left operand

A+=10 is equivalent to

A =A +10

- = Subtracts right operand from
the left operand and assign the
result to left operand

A-=10 is equivalent to

A =A -10

*= Multiply right operand by the
left operand and assign the
result to left operand

A*=10 is equivalent to

A =A *10

/= Divides left operand by the
right operand and assign the
quotient to left operand

A/=10 is equivalent to

A =A /10

%= Divides left operand by the
right operand and assign the
remainder to left operand

A%=10 is equivalent to

A =A %10

**= Performs exponential
operations on operands and
assigns the result to left
operand

A **=2 is equivalent to
A=A**2

//= Performs floor division on
operands and assigns the result
to left operand

A//=2 is equivalent to
A=A//2

• Logical Operators: Logical operators are used to join relational
expressions.

OPERATOR DESCRIPTION EXAMPLE

not

NOT operator. It is a
unary operator and it
reverses the logical
state of its operand. If
a condition is true,
then Logical NOT
operator will make
false.

>>> not(5>10) = not(false)

true

or OR Operator. It
returns true if any of
the conditions joined
by this operator are
true. It is false when
both the conditions are
false.

>>> (10<5) or (15>20)

false

>>> (10>5) or (15>20)

true

>>> (10<5) or (15<20)

true

>>> (10<5) or (15< 20)

true

VINEETA GARG 6

and AND Operator. It
returns true if both the
conditions joined by
this operator are true.
It is false when any of
the conditions are
false.

>>> (20>5) and (15>10)

true

>>> (20<5) and (15>10)

false

>>>(20>5) and (15<10)

false

>>>(20<5) and (15<10)

false

NOTE: Please remember

Expression Result Expression Result

not(false) true true and true true

not(true) false false or true true

false and false false false or false false

false and true false true or false true

true and false false true or true true

INCREMENT/ DECREMENT OPERATORS

Increment (++) operator and decrement (- -) operators are used to increase and decrease the

value of variable respectively. There are two types of increment and decrement operators: pre

and post.

❑ PRE-INCREMENT/PRE-DECREMENT - in a prefix expression, value is

incremented/decremented first then this new value is restored back to the variable.

For eg.

Sum= ++num; // here first the value of num is incremented by 1 and then stored in

sum.

❑ POST-INCREMENT/POST-DECREMENT -In postfix expression the current

value is assigned to a variable then it is incremented/decremented by 1 and restored

back to the original variable. For eg.

Sum=num++; //here the value of num is first stored in sum and then it is incremented

by 1.

For example: int num=10, sum=5;

++num;

num++:

In both cases num will become

11

- num;

num- -;

In both cases num will become

9.

VINEETA GARG 7

sum=++num + 5; Here the value of num is first

incremented and then added to

5 and stored in sum. Thus,

sum=16 and num=11.

sum = num++ + 5; Here the value of num is first

added to 5 and stored in sum

and then num is incremented

by 1. Thus sum=15 and num=11.

OUTPUT QUESTION

Q Give the output of the following code:

int num=10;

 jtextfield1.settext(“ “+ num++);

num= -num;

jtextfield2.settext(“ “+ - - num);

num++;

jtextfield3.settext(“ “ + num);

OUTPUT

Explanation

IMPROTANT METHODS

1.setVisible(): To set the visibility of a component at run time.

VINEETA GARG 8

setVisible(true) implies that the component is visible and setVisible(false) implies that the

component is hidden.

SYNTAX

component.setVisible(boolean)

EXAMPLE

2.setEditable(): To set the editing property of a component at run time.

setEditable(true) implies that the contents of this component can be changed at run time

and setEditable(false) implies that the contents of this component cannot be changed at

run time.

SYNTAX

component. setEditable(boolean)

EXAMPLE

3.setEnabled(): To set the enabled property of a component at run time.

The setEnabled(true) implies that this component can trigger a reaction at run time and

setEnabled (false) implies that this component cannot trigger a reaction at run time.

SYNTAX

component. setEnabled(boolean)

EXAMPLE

VINEETA GARG 9

